
Introduction to
Docker
IDA Embedded - May 2017

Continuous Improvement Agent

Trainer and mentor in Git,

Docker, Continuous Delivery,

Cat genetics and related

topics

jak@praqma.net

@jankrag

Jan Krag

A brief tour of Docker

By the end of this session you will understand:

● What is a container and why you may want one
● How to run pre-built containers
● How to create your own containers
● How to share your containers
● How to run multi-container applications
● How Docker supports Continuous Delivery

What the why now?

If docker is the answer, what is the question?

8

A History Lesson

One application on one physical server
In the Dark Ages

9

Historical limitations of application deployment
• Slow deployment times
• Huge costs
• Wasted resources
• Difficult to scale
• Difficult to migrate
• Vendor lock in

10

A History Lesson

• One physical server can contain multiple applications
• Each application runs in a virtual machine (VM)

Hypervisor-based Virtualization

11

Benefits of VM’s
• Better resource pooling

− One physical machine divided into multiple virtual machines
• Easier to scale
• VM’s in the cloud

− Rapid elasticity
− Pay as you go model

12

Limitations of VM’s
• Each VM stills requires

− CPU allocation
− Storage
− RAM
− An entire guest operating system

• The more VM’s you run, the more resources you need
• Guest OS means wasted resources
• Application portability not guaranteed

13

Introducing Containers

• Each root file system is called a container
• Each container also has its own

− Processes
− Memory
− Devices
− Network stack

Containerization uses the kernel on the host operating system
to run multiple root file systems

14

Containers

15

Containers vs VM’s
• Containers are more lightweight and faster
• No need to install guest OS
• Less CPU, RAM, storage space required
• More containers per machine than VMs
• Greater portability
• Containers are easy to manage as they share a common OS

− Share multiple workloads on a single OS
• Containers are a better way to develop and deploy microservices
compared with VMs.

Docker is a platform

Docker is a platform for developing, shipping and running
applications using container technology

The Docker Platform consists of multiple products/tools:

● Docker Engine

● Docker Hub

● Docker Trusted Registry

● Docker Machine

● Docker Swarm

● Docker Compose

● Kitematic

From https://www.docker.com/what-docker

Dependency management

Docker provides a means to package and application with all
its dependencies into standardized unit for software
development

It provides isolation, so applications on the same host and
stack can avoid dependency conflict

It is portable, so you can be sure to have exactly the same
dependencies at runtime during development, testing and in
production

https://www.google.com/url?q=https://www.docker.com/what-docker&sa=D&ust=1493836723177000&usg=AFQjCNE4j3EEm_LgTHVUTnPgkgOj-7TUTw

From https://www.docker.com/what-docker

Resource Utilization

Better utilization, more portable, shared operating system

https://www.google.com/url?q=https://www.docker.com/what-docker&sa=D&ust=1493836723348000&usg=AFQjCNHoZcdFFLWj7jtum5djCsWPYd431A

20

The deployment nightmare

Do services
and apps
interact

appropriately?

Can I migrate
quickly and
smoothly?

Multiple
development

stacks

Multiple
hardware

environments

21

A shipping analogy

Multiple
types of
goods

Multiple
methods of

transportatio
n

Do I worry
about how

goods
interact? (i.e.
place coffee
beans next
to spices)

Can I
transport

quickly and
smoothy?
(i.e unload
from ship
onto train)

22

The shipping container

Do I worry
about how

goods
interact? (i.e.
place coffee
beans next
to spices)

Can I
transport

quickly and
smoothy?
(i.e unload
from ship
onto train)

Multiple
types of
goods

Multiple
methods

of
transporta

tion

23

Docker containers

Do services
and apps
interact

appropriately?

Can I
migrate
quickly

and
smoothly

?

Multiple
developmen

t stacks

Multiple
hardware

environmen
ts

Let's get started...

http://docs.docker.com/

Running Docker - Linux

Installed via your favourite

Installing Docker

Documented install procedure on many platforms

 https://docs.docker.com/engine/installation/

Changes faster than I can update my slides

Recently: Split between Community and Enterprise Edition

https://www.docker.com/community-edition

Running Docker - Linux

Docker is built on Linux kernel features

Runs natively on Linux

Most modern Linux flavours (Min. kernel 3.10)

Running Docker - Mac

Requires a virtual Linux - but don't worry

"Docker for Mac"

Integrated with the MacOS Hypervisor framework,
networking and filesystem

Running Docker - Windows

Requires a virtual Linux - but don't worry

"Docker for Windows"

Native Windows app deeply integrated with Hyper-V
virtualization, networking and file system

Ability to toggle between Linux and Windows Server
environments to build applications

$ docker info

Are we there yet?

$ docker version

Are we there yet?

Let’s create some
containers!

$ docker run hello-world

Hello, IDA!

What just happened there then?

Commands are executed on the
client

Images are pulled from
repositories

Containers are run from images

An container is...

● an isolated and secure application platform
● run, started, stopped, moved, and deleted
● created from a Docker image

$ docker pull alpine

Let's get another

docker images

Find out what images you have

Images are specified by repository:tag

Default tag is latest

Image Tags

$ docker run alpine ls -l

$ docker run alpine echo "hello from
alpine"

Run a command

Docker hub

$ docker run ubuntu:14.04 echo “hello
world”
$ docker run ubuntu:14.04 ps aux

Let’s saturate the network!

The second run should be faster because there is
no download

$ docker run -i -t ubuntu:14.04 /bin/bash

Let’s run a container with a terminal

-i flag tells docker to connect to STDIN on the container
-t flag specifies to get a pseudo-terminal

$ docker ps

Look at our running containers

Use the -a flag to include stopped containers

List all containers
Containers have ID’s and Names

$ docker ps -a

$ docker run -d ubuntu:14.04 ping 127.0.0.1 -c 50

Use detached mode to run a container in the
background

Use docker logs [containerID] to get the output
-f is a useful flag

$ docker logs [containerID]
$ docker logs -f [containerID]

What is happening inside?

$ docker run -d -P nginx

Time for a web server!

Use docker ps to get the nginx port mapping

$ docker run ubuntu:14.04 echo "hello"
$ docker run -ti ubuntu:14.04 /bin/bash
root@1234dfs:/# ps -ef
CTRL + P + Q
$ ps -ef

Container processes

A container only runs as long as it’s process
Your command’s process is always PID 1 in the container

$ docker attach <container-id>

Getting back in

Containers have ID’s and Names
Either can be used

$ docker stop <container-id>

$ docker ps

Now it is not listed anymore

Stopping the container

$ docker ps -a -f status=exited

What about exited containers?

$ docker run -i -t ubuntu:14.04 /bin/bash

Let’s add something to our container

$ apt-get update
$ apt-get install nano
$ nano test.txt
$ exit

Let’s add something to our container

Images

An image is...

● A read-only template
for creating containers

● The build component
of docker

● Stored in registries
● Can be created by

yourself distributed by
others

Images are layered read-only filesystems

Images have base layers

Multiple root file systems per host are
normal

When an image is run, a writable layer is
added

Let’s make an image

$ docker commit 234d3ea32 simple:1.0

Docker commit saves changes in a container as a new
image

$ docker run -it simple:1.0 bash

root@2343245:/# cat test.txt
root@2343245:/# nano test.txt

Let’s run our new image

The Dockerfile

The Dockerfile

A Dockerfile is a configuration file that allows us to specify
instructions on how to build an image

It enables configuration as code

More effective than using commit

- Share the configuration rather than image
- Supports continuous integration
- Easier to review
- Easier to update

Dockerfile for myapp
FROM ubuntu:14.04
RUN apt-get update
RUN apt-get install -y curl
RUN apt-get install -y vim

Dockerfile instructions

The default name for the file is Dockerfile

Run instructions are executed in the top
writable layer

Dockerfile for myapp
FROM ubuntu:14.04
RUN apt-get update && apt-get install -y \
 curl \
 vim

Aggregating RUN instructions to reduce layers

$ docker build -t simple:1.1 .

Building an image from a Dockerfile

The build command takes a build context on the filesystem
-f flag can be used to specify a different Dockerfile location

Dockerfile for myapp
FROM ubuntu:14.04
RUN apt-get install -y vim
CMD [“PING”, “127.0.0.1”, “-c”, “10”]

The CMD instruction

Can only be defined once
Can be overridden at run time

Dockerfile for myapp
FROM ubuntu:14.04
...
ENTRYPOINT [“PING”]

The ENTRYPOINT instruction

Can have a CMD in addition

Dockerfile for myapp
EXPOSE 80
ENV JAVA_HOME /usr/bin/java
COPY index.html /var/www
ADD robots.txt /var/www

Other notable Dockerfile commands

Dockerfile best practices

Containers should be ephemeral

Use a .dockerignore file to exclude unnecessary files from the
build context

Avoid including unnecessary packages and dependencies

Run only one process per container

Minimize the number of layers

Use the build cache to your advantage

Managing Containers

$ docker run -d nginx
$ docker stop [CONTAINER_ID]
$ docker start [CONTAINER_ID]

Other notable commands

$ docker exec -it [CONTAINER_ID] bash

Getting terminal access to a container

$ docker rm [CONTAINER_ID]

Removing containers

Will only remove stopped containers

$ docker rmi simple:1.0

Deleting images

$ docker rm -f $(docker ps -a -q)

Wipe em all out

● GUI for Docker

● Start and stop containers

● Connects to Docker Hub to access your images

● Runs on Mac OSX and Windows

● Support for auto update

Kitematic

Sharing containers

Let’s add our repository on hub

$ docker tag simple:1.0 jkrag/idademo:1.0

Make a tag that matches our repository on hub

$ docker push jkrag/idademo:1.0

Push to hub

Docker volumes

- Survive beyond the lifetime of a
container

- Can be mapped to a host folder
- Can be shared amongst containers

A volume is a directory in a container used for
persistence

$ docker run -d -P -v /tmp/myapp/html/:/www/website
nginx
$ docker exec -ti [ID] bash
$ ls /var/www/html

A volume is a directory in a container used for
persistence

Docker volume command

● docker volume create
● docker volume ls
● docker volume inspect
● docker volume rm

create a volume
VOLUME /myvol

multiple volumes
VOLUME /myvol1 /logs

json syntax
VOLUME [“myvol1”,”myvol2”]

You can also add volumes in the Dockerfile

Volume best practices

Containers should be ephemeral

Avoid mounting directories from the host in production

Data containers are recommended

Docker compose

Using docker-compose to create multi-container apps

web:
 build: .
 ports:
 - "5000:5000"
 volumes:
 - .:/code
 links:
 - redis
redis:
 image: redis

Web db

$ docker-compose up
$ docker-compose -d up
$ docker ps
$ docker-compose ps
$ docker-compose start <service name>
$ docker-compose stop <service name>
$ docker-compose rm <-v> <service name>

Using docker-compose

$ docker-compose logs
$ docker-compose scale

Using docker-compose continued...

Continuous Delivery
with Docker

user repo CI server App server

compile

test

package

commit trigger deploy

Traditional CI server

repo CI server

compile

test

build image

trigger

Docker based CI

Host

pull

Docker Registry

push
image

run
container

CI server

compile

build image
trigger

Docker based CI Docker Registry

push
image

CI server
run container

test in container

pull

Deploy or
promote

build image

Docker based CI

CI server run container

test in container

dev

compile in container

E.g. load test from
container

build image

Docker based CI environment

CI server

run container

test in container

compile in container

E.g. load test from
container

Advantages for CoDe

Need different sets of compilers or versions

Isolation and reproducibility of complex build environments

No conflicts between different tools

Rather than keeping a physical or virtual machine around you
can just keep the Dockerfile that built a release

Good for having twenty years of accountability

Docker Hub’s auto build

Where are we now?

A brief tour of Docker

We have now covered:

● What is a container and why you may want one
● How to run and manage containers
● How to create your own containers
● How to share your containers
● How to create multi-container applications
● How Docker supports Continuous Delivery

Q & A

